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SUMMARY 

The need for accurate and rapid field identification of wood to combat 
illegal logging around the world is outpacingthe ability to train personnel 
to perform this task. Despite increased interest in non-anatomical(DNA, 
spectroscopic, chemical) methods for wood identification, anatomical 
characteristics are the least labile data that can be extracted from solid 
wood products, independentof wood processing (sawing, drying, micro­
bial attack). Wood identificationusing anatomical characteristics is thus 
still a viable approach to the wood identification problem, and automating 
the process of identification is an attractive and plausible solution. The 
undisputed increase of computer power and image acquisition capabili­
ties, along with the decrease of associated costs, suggests that it is time 
to move toward non-human based automated wood identification systems 
and methods. This article briefly reviews the foundations of image ac­
quisition and processing in machine vision systems and overviews how 
machine vision can be applied to wood identification. 

Key words: Machine vision, wood identification,illegal logging, endan­
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MEETING DEMAND FOR WOOD IDENTIFICATION 

Of the global timber harvest, it is estimated that as much as 10%by timber volume is 
in trade illegally (Seneca Creek Associates 2004). Although wood identification is 
only one ofthe tools necessary to combat illegal logging (Johnson & Laestadius 2011), 
it is typically one of the first applied. A field inspector might determine that a ship­
ment of wood may be illegal based upon on in situ visual inspection. This first stage 
of forensic identification is a critical step in law enforcement, and the closer in time 
and space to the forest we can move the identification component, the better the forest 
will be protected from illegal timber harvest. 

Currently, we rely on human inspectors to examine wood shipments, and compare 
what is written on a manifest or bill of lading to the wood in the shipment. In an ideal 
world, all inspectors would be trained in basic wood identification,and would be fully 
competent to make such determinations.Comparatively few inspectors have the training 
to definitively distinguish hardwoods from softwoods,and of those, it is likely that over 
time they will be promoted, lose interest, forget, retire, or otherwise stop performing 
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identifications, and further will fail to pass on their knowledge. Because anatomical 
identification is time-consuming and requires training (Miller et al. 2002; Koch et al. 
2011; Sarmiento et al. 2011), efforts have been made to identify wood using non­
anatomical characteristics (near infrared spectroscopy,Braga etal. 2011; identification 
of species-specific extractives, Kite et al. 2010; DNA identification of CITES taxa, 
Hanssen et al. 2011).One aspect unifying these techniques is the comparative lack of 
training necessary for a field agent to collect a specimen suitable for analysis. 

Although appealing for their comparative simplicity, non-anatomical data are la­
bile or expensive to collect and may not always be present in a given specimen. For 
example, the sapwood of Dalbergia nigra is still D. nigra (Gasson et al. 2010), even 
if extractives (as are detected in the Kite et al. 2010 method) are absent. Conversely, 
D. nigra heartwood is still D. nigra, even if DNA is not extractable in sufficient qual­
ity or quantity to make an identification. Thus, an argument can be made that barring 
total destruction of a solid wood specimen (e.g. massive wood decay, burning to ash, 
etc.), the most reliable set of data will be the anatomical data set, despite its limitations 
in providing a species level identification (Abe et al. 2011; Braga et al. 2011; Gasson 
2011; Hanssen et al. 2011; Lowe & Cross 2011). 

As has been done in factories and other industrial contexts, medical diagnostics (e.g. 
Arimura et al. 2009), and other areas of biology (Cox et al. 1998 for fungal mycelia) 
we suggest using machines to do more efficiently what is usually done by humans, or to 
accomplish what is left unachieved as a result of human failings. Specifically,we assert 
that the time is upon us to design and implementmachine vision systems for field wood 
identification;machines do not forget, lose interest,get promoted, or retire. They do not 
grow tired of processing the same information, and when data are properly managed, 
have the capacity to learn and store more information than any human could learn or 
store over a lifetime of wood identification. Ifju (1983) envisioned a future in which 
this would be possible, using instrumentation and stereology to collect a sampling of 
quantitative data to characterize woods. Machine vision technologies are now mature 
enough to be adapted to hand-held units to perform routine field wood identification. 
The fundaments of this approach are reviewed and discussed here. 

In the broadest conceptual sense, machine vision systems for wood identification 
consist of a light source, the wood, a sensor that collects the reflected or transmitted 
light, a converter that turns the light into digital signal, a processor that manipulates 
that signal, a reference data set against which the signal is evaluated, and a software-
encapsulated decision process that produces a result. This is fundamentally the same 
for traditional anatomical wood identification: there is a specimen and its environ­
ment, a sensor collecting a signal (human senses), a processor manipulating the signal 
(a human interpreting patterns and working with reference tools [xylaria, Inside Wood, 
identificationkeys]), and a decision process (again, human-mediated) that produces a 
result. Thus machine vision systems are fundamentally analogous to human identifica­
tion systems. An advantage of machine vision systems, however, is that the various 
components, because they are engineered by humans, are more fully understood than 
the analogous processes taking place in the human mind. 
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MACHINE VISION: OVERVIEW FOR WOOD ANATOMISTS 

The core goal of a machine vision system, especially in the context of wood identifi­
cation, is to achieve a quantifiable, repeatable, and reliable pattern recognition result. 
For people, pattern recognition is so routine a part of the human experience we seldom 
recognize that we are continuously engaged in the process. Only when attempting to 
acquire new skills, such as learning to identify wood, do we consiously experience 
the workings of our own systems of pattern recognition. 

The subconscious or automatic functioning of human pattern recognition systems is 
something advertisers and businesses rely on, in the context of branding and logos. For 
example, the average American sees 16,000 advertisements, logos, and labels in a day 
(Khalsa & Stauth 1997), and recognizes many of them without conscious thought or 
intent. Pattern recognition in humans is not limited to sight; we can recognize patterns 
with all of our senses, but for the purposes of this article, sight is the most important 
sense. 

Recognizing patterns is considered both an innate skill and one that is learned (Suther­
land 1968). From infancy, humans are able to process vast amounts of input (sights, 
sounds, smells, physical sensations) and group them and structure them in a way that 
extracts pattern from the apparent chaos. It is this distillation of meaningful information 
from an abundance of data that is a core aspect of machine vision and pattern recogni­
tion, and this is something humans have begun to offload to computers. When a print 
document is scanned into an electronic file, optical character recognition converts the 
representations of test as images into digital text in a file. We likewise employ machine 
vision for quality control on production lines and in fingerpring recognition. sawmills are 
using machine vision systems for grading of lumber (Conners et al. 1992; Srikanteswara 
1997; Pham & Alcock 1999; Bhandarkar et al. 1999, 2002; Kline et al. 2001, 2003; 
Fuentealba et al. 2004). Surprisingly, only one group is publishing on using machine 
vision for wood identification (Khalid et al. 2008; Bremananth et al. 2009; Yuspf et al. 
2010), although aspects of machine vision are being employed in the detection of certain 
anatomical features (Pan & Kudo 2010). 

Machine vision thus combines optics, electrical engineering, and software engineer­
ing to make decisions on information obtained via light captured by a sensor. Numerous 
tomes have been published on machine vision (see Hornberg 2006) and pattern clas­
sification (see Duda et al. 2000) as scientific and theoretical fields in their own right. 
The objective of this manuscript is to provide a brief technical overview of machine 
vision suitable for practicing wood anatomists interested in this technology for wood 
identification. We divide machine vision into two broad categories for review: signal 
acquisition, and signal processing. 

COMPONENTS OF A MACHINE VISION SYSTEM 

Because a machine vision system is a real-world assemblage of components (Fig. 1), 
each with its own function or rold, it is useful to examine each component in turn. The 
signal acquisition system for machine vision consists of a light source, and object of 
interest, an objective lens, a sensor, a signal amplifier, and a digital converter. The sig-
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Figure 1 .  Schematicof the components of a machine vision system. The physical componentsof 
the system begin on the left with incoming light, the object of interest,an objective,and further 
include the sensor, amplifier, and analog to digital converter (ADC). The output of the ADC is 
an array of numbers (2D Array) representing the object, and this array is fed into the machine 
vision algorithms (a smoothing function is shown), which are processed by one or more com­
puters (not illustrated).The outputs of these algorithms are decisions based on the information 
gathered and extracted. 

nal acquisition system may perform certain initial preprocessing tasks (formatting the 
data into an image file format (tiff, jpeg, etc.), and then the digital output of the signal 
acquisition system is fed into the main signal processing portion of the machine vision 
system, which is a combination of computer hardware and software for processing the 
data, as well as some form of interface for a human user, if needed. 

Light 
The first process-controlling step in any vision system is lighting, and it is the step 

over which we can exert the greatest directcontrol. Stating the obvious,if initial informa­
tion is absent, then no algorithm will be able to detect a pattern in it. No prescribed set 
of rules exists for configuring lighting because the ways light interacts with an object 
of inspection varies according to numerous optical (color, reflection, transmission), 
mechanical (surface geometry and imperfections), and environmental (moisture) fac­
tors. Experimentation is required to determine the appropriate lighting regime for any 
given application. When examining a wood specimen with a hand lens, we often will 
rotate or move towards or away from the light to highlight the features we are trying 
to discern. A functional machine vision system must similarly optimize the lighting to 
maximize the ability to collect meaningful signals. 

Object of interest 
The second step in the process is the interaction of the light with the wood specimen 

itself. Because our emphasis in this paper is wood identificationin the field rather than 
in the laboratory,we discuss imaging the object of interest using light reflected from the 
surface of the wood specimen, rather than light passing through a thin section of wood. 
Practicing wood anatomists already know that the quality of the surfaceof the specimen 
directly influences the observation of anatomical detail. On a transverse surface cut 
with a dull hand saw, features are obscured compared to those on a transverse surface 
prepared with a utility knife or a microtome. Artifacts of cutting, such as knife marks 
or broken intervesselwalls, are easily filtered out and ignored by humans, but are not as 
easily removed by a machine vision system. In the data collection phases of preparing 
a machine vision wood identification system, it is critical that the reference specimens 
be prepared with the same techniques to be used when the device is employed in the 
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field. If laboratory-quality images are used as references, but specimens in the field are 
cut with a utility knife, the cell damage, knife marks, and uneven surface of the latter 
will be misinterpreted by the system as anatomical features rather than preparation 
artifacts. 

Objective lens 
The task of the objective lens is to capture and condition the incoming light (con­

verge or diverge it to a plane) for the sensor. If the objective lens induces chromatic 
and spherical aberration, they can be removed mathematically from an image in a well-
designed system. Filters can be employed to mitigate extraneous information that 
would otherwise complicate the data. The most important filters are pass filters, which 
block certain wavelengths while allowing others to be transmitted. An ultraviolet 
(UV) filter is a form of long-pass filter, eliminating all wavelengths shorter than -380 
nm. Although the human eye can be harmed by them, silicon-based machine sensors 
are not particularly sensitive to UV photons. However, an infrared filter (i.e. short-pass 
filter) is an important component when working with silicon-based sensors, because 
wavelengths in the near-infrared spectrum penetrate into the sensor and are generally 
perceived by machine sensors as visible light. Absorbing bandpass filters are utilized 
extensively in acquiring color digital images (Fig. 2). Commonly used semiconduc­
tors for sensors are “color blind”; the sensor cannot differentiate the wavelengths of 
light we see as colors. Absorbing bandpass filters allow a range (band) of wavelengths 
to be transmitted while absorbing the other wavelengths. The narrower the band, the 
more “pure” the color; this is a method of controlling the wavelengths of light that 
reach the sensor. 

Figure 2. Idealized transmission efficiency and wavelength ranges of Red, Green, and Blue vis­
ible light bandpass absorbing filters. Note that although the filter may have a peak transmis­
sion at one particular wavelength (center wavelength), a range of light with decreasing percent 
transmission passes through. The bandwidth or full width at half maximum transmission is the 
width of the spectrum at half the peak transmission. 
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Figure 3. A schematic of the M by N organization of the photodetectors in a digital camera sen­
sor. Each pixel (grey tab) provides one element in an array of directly measured information 
about the light striking it. 

Sensor 
Before humans or a machine can process a signal and discern a pattern, a signal 

needs to be acquired. For vision, this entails a photon being absorbed by a rod or cone 
in the eye for humans, or photoactive silicon for the sensor in a digital camera. The 
camera sensor is a semiconductorwith an array of M by N photoactive sensors or pixels 
(Fig. 3), each of which will provide one pixel of data to the final image. In an ideal 
sensor, every photon would be absorbed by the pixel it encountered, creating a photo­
electron that gets counted and placed into the proper row and column in the 2D array 
as depicted in Figure 1.Unfortunately,real sensors fall short of this ideal, as shown by 
the quantum efficiency plot versus wavelength in Figure 4. This plot is one example of 
quantum efficiency for a sensor, and shows a common pattern of nonlinear sensitivity 
to wavelengths in the visible and non-visible spectrum. The sensor produces or fails 
to produce a photoelectron in response to the photons striking it, and it records that 
event independent of the wavelength of the photon striking it, thus there is no color 
information perceived by the sensor. 

Figure 4. Quantum efficiencyof a generic, idealized sensor. Note that the greatest efficiency (per­
cent photons striking the sensor converted to photoelectrons) is found between green and infrared; 
the infrared photons invisible to the human eye more efficiently generate photoelectrons than do 
portions of the visible spectrum. For no wavelength is the quantum efficiency higher than 40% 
for this sensor. Each sensor has its own unique quantum efficiency curve. 
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Figure 5. The pattern of light striking the sensor after passing through a Bayer mosaic filter to 
generate a color RGB image. Note that there is a 1:2:1 ration of Red to Green to Blue pixels in 
the sensor. Note also that each pixel can record a light intensity for only one color (indicated 
by R,G,B). The limits of the pattern shown give rise to the need for interpolation or correlation 
across those pixels for which a given color was not directly measured. 

Various workarounds have been implemented to distrnguish colors, but the most 
common is to use filters to limit the wavelength of light striking an individual pixel. 
A Bayer mosaic filter is the most common filter for single-chip sensors. The pattern is 
25% red, 50% green and 25% blue (Fig. 5). Green is dominant in the pattern because 
the human eye is the most sensitive to green light and chip manufacturers are trying 
to capture images of the real world as we see it with our eyes. Because a green pixel 
contains limited information about the rest of the color spectrum (see Fig. 2), the full-
color image is reconstructed by interpolating or correlating the missing values from 
neighboring pixels for which real data were collected. Thus, for an RGB chip with the 
25 % : 50 % : 25 % pixel array, for any given image the minority of the data in the im­
age is actually measured; most of the data is interpolated by the system. For general 
photography and day-to-day applications this is acceptable; however, for scientific 
purposes such interpolation or correlation induces chromatic aliases (the reconstructed 
color differs from that of the actual specimen) and creates a loss of resolution (detail. 
sharpness, and edge ariifacts - physical details that are caused by the processing of the 
image and not a legitimate feature of the specimen). With a mosaic color filter over 
the sensor, we now have an M by N array of data, each pixel of which has one meas­
ured pixel value (either red, green or blue) and two estimated pixel values, based on 
an interpolation or correlation of color values from the nearest pixels for which that 
color was actually measured. Those intensity values are the output of the final pieces 
of hardware in the image acquisition phase of the machine vision process, the amplifier 
and analog to digital converter. 

Amplifier and analog to digital converter 
The last step in acquiring the image is to “count” the number of photoelectrons cre­

ated when photon interact with the sensor, after passing through whatever filters are 
employed. Typically, the signal embodied in the photoelectron is amplified and then 
converted to a number via an analog to digital converter (ADC). The ADC discretizes a 
continuous analog signal into steps of digital numbers (Fig. 6). The number of steps is 
determined by the number of bits in the analog to digital conversion (8 bit - 256 steps, 
12 bits = 4096 steps, 16 bits = 65536 etc.). The more bits in the conversion the bet­
ter the resolution and the closer the digital signal approximates the measured signal. 
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Figure 6. A 3-bit analog-to-digital conversion (ADC) over a normalized voltage range for the 
sensor; the Y axis is coded with the binary output of the ADC. As a step-function, there are digital 
equivalencies across the range of measured voltages. As the number of steps (bit depth) increases, 
the resolution of the sensor increases, but only so long as the sensor is calibrated so that the 
least significant bit(s) (the dashed vertical line) do not consume bit-depth and thus imply a false 
resolution. The greater the bit depth the larger the resulting image (in terms of memory) will be, 
as each pixel has more bits thus more memory is needed to hold those bits. 

Increased resolution comes at a cost; doubling the number of bits doubles the storage 
size of the image and also increases the time to process. Furthermore, a threshold is 
reached where the resolution of the ADC exceeds the noise of the sensor. If the noise 
of the sensor exceeds the least significant bit(s) (LSB), it will just contain noise. The 
effective noise of the sensor is calculated by 

where SNR is the signal to noise ratio. The SNR can be obtained from the manufacturer. 
Noise comes from the random nature of photon arrival time, dark current of the sensor 
(thermal noise), the ADC conversion (Steger et al. 2008), and any external electro­
magnetic noise. Thus, more important than the number of bits in the conversion of the 
signal from the sensor is that the bit depth of the sensor be calibrated to the noise in 
the system. For this reason, and those listed above in sections on the sensor itself, one 
should not use just any camera in a machine vision system; the specific details, and 
the pursuant limitations, of the signal acquisition system should be known and chosen 
carefully for the application. 

While image acquisition is one critical, quality-controlling step in the machine 
vision process (garbage in garbage out), the typical user leaves all the inner workings 
of image acquisition to the camera manufacturer. Once an appropriate camera system 
is purchased, the role of the user is to manipulate the software algorithms to achieve 
the desired pattern recognition. Assuming that we have an array of quality numbers, 
software can be used to interrogate these numbers to extract patterns, thus providing 
the data on which determinations (e.g. wood identification) are based. This process of 
interrogation and determination occurs in many steps, outlined concisely in Sonka et al. 
(2007), the first of which is to understand the nature of the image itself. 
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Figure 7. A schematic of the M-by-N array of numbers produced by the sensor, amplifier, and 
ADC. On the left is a representation of the single measured intensities for each pixel, according 
to the filter that covered that pixel. The top row, from left to right, shows intensity values for R, 
G, R, the middle row G, B, G, and the bottom row R, G, R. On the right is the same data matrix, 
with the unmeasured RGB data filled in based on an unknown algorithm from the camera manu­
facturer. The bold values show those intensities that were directly measured. 

Machine vision algorithms (software) 
The anatomy of an image 

A high-resolution digital image is nothing more than a few million numbers, regard­
less of how it appears when displayed on a computer screen. After analog to digital 
conversion, and following the system’s interpolation or correlation functions to fill 
in missing color information, these numbers form an M by N array with an intensity 
value for each pixel for a grayscale image (Fig. 1) or multiple values per pixel, one 
for each color (Fig. 7). If the intensity values are plotted as heights, the image can be 
represented three-dimensionally (Fig. 8), a completely legitimate but altogether for­
eign way to display the image for most wood anatomists. For example, consider the 
simple image of a black, RGB [0, 0, 0], circle (idealized vessel) beside a light grey, 
RGB [ZOO, ZOO, ZOO], line (idealized ray) on a grey, RGB [100, 100, 100], background 
depicted in Figure 9. Compare this traditional representation to its 3D topographical 
depiction in Figure 10.Both images represent precisely the same data in terms of pixel 
values. The intent behind displaying the image this way is to emphasize the format in 
which the computer stores and processes images and to elucidate some of the tech-

Figure 8. A 3-dimensional topographic representation of the data comprising an image of a trans­
verse surface of Samanea saman at hand lens magnification, with the full field of view on the left, 
and a magnified portion (inset) on the right. 
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Figure 9. A simple grayscale image with a black RGB [0, 0, 0] circle (idealized vessel) beside 
a light grey RGB [200,200,200] line (idealized ray) on a grey RGB [100, 100,100] back­
ground.-Figure 10. A 3D topological representation of the grayscale image of Figure 9. Both 
figures represent the same information but Figure 10 depicts how computer vision algorithms 
interpret the data as a 3D topology to be interrogated. 

niques used in machine vision; it forces us to acknowledge the degree to which our 
biological pattern recognition systems are at play when viewing the traditional way of 
representing the data (Fig. 11).When an anatomist seeks to define a wood anatomical 
character for machine vision identification, understanding the numerical nature of the 
data is critical. Machine vision software extracts useful information (patterns) from 
such numbers and then applies that information to make a decision. 

Figure 11. The more typical representation of 
the image inset from Figure 8 (Samanea saman). 

Image-based definitions of wood anatomy 
The task of translating what a wood anatomist perceives in a digital image into 

somethingquantifiablefor a computer is a massive one. Robust, flexible,and internally 
consistentdefinitions for charactersand character states are hard to come by, or possibly 
even impossible to achieve in anatomy in general (e.g. see the interesting but conflicted 
literature on imperforate tracheary elements for a case in point), and for machine vision 
specifically.Anatomists can publish a set of characters, character states, and defini­
tions (IAWA Committee 1989,2004) and then the scientificcommunity can use those 
definitions and train its students to interpret and apply them correctly.A disadvantage 
of such a system is that, if there is need or desire to create or alter a definition, each 
person in the field must be re-trained with the new or revised definition. One of the 
advantages of a machine vision system is that, if it stores an original digital image as a 
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reference specimen, it can always re-analyze that image in the light of new or revised 
definitions supplied by the humans developing the tool. In a machine vision system, 
character definitionsare nothing more than encoded heuristics of the desired patterns to 
be extracted from the digital image. This is the electronic equivalent of what anatomists 
do automatically using the human-biological pattern recognition system that they have 
developed with training and patience. 

The gap between traditional wood anatomy and the machine vision signal must be 
spanned by humans who encode the proper character definitions for the system. These 
definitions must be based on the information present in the digital images captured by 
the signal acquisition component of the system.To distinguish the defined patterns, the 
data must be prepared and manipulated. Although there are many ways to manipulate 
the image data, below we outline three basic types of operations, and then discuss their 
use in extracting wood anatomical information from an image of wood. 

PREPARING THE IMAGE FOR DISTINGUISHING PATTERNS 

Geometric transformation 
The M by N array of values is a mapping of a real-world object (wood specimen) 

with real spatial dimensions to the sensor with its own real world dimensions. This 
relationship between real space on the wood specimen and pixel space in the image 
is an important aspect of the information in the image. If the objective did not cause 
any aberration, then a constant scale adjustment would suffice to describe this map­
ping. We commonly use scale bars on images to indicate magnification, and the same 
setting of scale is necessary if we are to use machine vision to incorporate real world 
lengths, areas, etc., in images of wood. If aberrations (spherical or perspective errors) 
do occur, then more complex algorithms are required to establish the specimen to pixel 
relationship, but this can be done relatively easily with software. Calibrated 2D targets 
are available to establish the degree of aberration in the optical system. The geometric 
transformation, in this case, is thus mapping the context of the image relative to the 
real world, and is necessary to a machine vision wood identification system. 

Point operations 
Point operations take single pixels as input and return a single pixel as output. 

Mathematically this can be represented as g’ (r, c) = f [g (r,c)], where r and c are the 
row and column respectively ofg, the input image array, f [ 3 is the mathematical opera­
tion and g’ is the resulting image array. Some examples of point operations are lighten­
ing, darkening, negation, equalizing, and simple thresholding of an image. For exam­
ple, the equation for thresholding an 8-bit image into two segments, separated at pixel 
level t is: 

(1) 


This gives rise to an image with either black or white pixels, and no grey pixels. Point 
operations are useful in machine vision for wood identification to prepare or condition 
the image for subsequent operations. 
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Area operations 
Area operations calculate the value of a pixel based upon a group of other pixels, 

typically those in the neighborhood of the original pixel. Area operations are the most 
common method of preparing an image to look for patterns or to ready it for other 
purposes. Linear and non-linear filters are some of the most used area operations. For 
example, by examining the area around the pixel, the software can calculate informa­
tion about the local topography; whether the pixel’s intensity values represent a local 
minimum or maximum, the direction of the steepest incline, or a level traverse. These 
determinationsare made based on the interpretationof the image as a three-dimensional 
topography. Edge detecting algorithms use this information to determine boundaries 
within the image, and such algorithms are central to extracting wood anatomical in­
formation from an image. An idealized edge would be a cliff wall, topographically 
(Fig. 10), but edges in real images are less distinctly defined. 

FOUR DOMAINS IN HARDWOODS 

For the purposes of a general example, let us consider hardwood identification from 
the transverse plane at hand-lens magnifications. Considering only the information 
that comes in through the lens (and not what you already know from seeing the wood 
under the light microscope) characters for certain cell types and patterns disappear (e.g. 
vasicentric tracheids appear as vasicentric parenchyma,diffuse apotracheal parenchyma 
does not appear at all in many woods). This means that, in general terms, we can distill 
hardwoods down to four basic domains: vessels, rays, axial parenchyma, and fibers. 
It is thus our task to define each of these components of a hardwood in a way that the 
machine vision software can pull out patterns from the numeric data that are similar 
to the patterns we see with our eyes. 

In order to approach this problem in an insightful way, we first reiterate that the data 
availableto the machine vision software occur as an M by N array of numerical values 
representing light intensities in one or more color ranges. From this array of numbers, 
we must define vessels, rays, axial parenchyma, and fibers. Our definitions must be 
independent of any of the features of wood that will vary by taxon. For example, if 
we use the color and size of the lumen as a feature to define a vessel, vessels much 
smaller or larger, or with gums or tyloses will not be recognized by the software. The 
definition we develop for the software must use only characteristics of vessels that are 
reliable acrosstaxa, and must take into account the nature of the data the machine vision 
system is processing. Each pixel in the image represents some tiny amount of the wood 
specimen itself, and the spatial or geometric relationship between a cluster of pixels in 
the lower left of the image and another cluster in the upper right is directly analogous 
to the lower left and upper right of the real wood block. This correspondence between 
what is seen on the wood block and what is represented in the image is the primary 
goal of the signal acquisition portion of the machine vision system; the machine vision 
software must be asked to extract pattern from data, and the better the data, the better 
chance of extracting pattern efficiently. While there are many ways to use machine 
vision software to extract wood anatomical features (vessels, rays, axial parenchyma, 
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fibers) from images, we outline one possible approach below as an illustration of the 
machine vision process for wood identification. 

Vessels 
The first feature in a hardwood we wish to define for our machine vision software is 

vessels. For the purposes of machine vision, vessels can be defined as having certain 
edge qualities and certain roundness qualities. In Figure 8, a vessel appears as a well 
and by applying edge detection algorithms to the data, and selecting for elements of 
a given circularity ratio, we can select for the vessels. Applying the algorithms just 
described, we can visualize the resulting data as shown in Figure 12. In this case, the 
three-dimensional mapping of the data shows the identified vessels. Once the system 

has identified all the vessels, the pixels that 
comprisethose vessels can be removed from 
the image; we can tell the machine vision 
system not to consider any of those pixels 
in the next step, effectively eliminating the 
vessels from the image. Now the image has 
missing data (vessels), but what is left must 
be, by definition, some combination of rays, 
axial parenchyma, or fibers. 

Note that at this point we have identified 
Figure 12. By thresholding and then ap- the vessels and ‘removed’ them from the
plying an edge detection algorithm to the 

inset from Figure 8, the vessels are now image. Because the image has a scale associ­

standing out above the background. ated with it, we have geometric information 

about vessel size (vessel area, but not vessel 
diameter), abundance (vessels per mm2), relative position in the M-by-N array, and 
more, but we know nothing about the pattern in which the vessels are arranged; ring-
porous, ulmiform, in clusters or radial multiples; the radial and tangential directions are 
as-yet-unknown.Tangential vessel diameter is likewise unknown. Such information is 
contextual, and comes only after further analysis. 

Rays 
Both because we need the contextual information they provide and because they 

are the next most distinctive features to extract, defining rays is the next step. Rays 
in hardwood share several general properties: they almost always run parallel to each 
other (the degree to which they diverge from each other is a function of the distance 
from the pith); they almost always run from one side of the image to the other without 
interruption; they are generally spaced relatively regularly; and,they are generally rather 
straight (e .g .  compare to banded parenchyma in Lecythis). The geometric aspects of 
rays are critical in defining them for machine vision software. Rays are parallel ridges 
in our topography of Figure 8, which can be seen upon close inspection of Figure 8, 
inset. Using techniques analogous to the methods described above for vessels (but with 
lines, rather than circles), we can distinguish the rays. 

With the rays identified, we have accomplished several things. First, we have 
geometric information about the number, width, total area, and spacing of the rays 
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themselves. Second, we now can re-approach our vessel information with the neces­
sary context to extract additional meaning. With the correct character definitions, we 
can ask the machine vision system to determine if the wood is ring-porous, or if it has 
radial vessel multiples. Third, we can remove all those pixels from the image that are 
defined as belonging to the rays, leaving only fibers and axial parenchyma to define. 
Note that laying out the criteria necessary to define each character or character state 
(e.g. ring-porosity) for a machine vision system exceeds the purview of our intent, but 
each character and character state to be used in a machine vision identification system 
will have to be defined in terms of the machine vision software. This is especially true 
for systems designed solely to mimic the human process of identificationby comparing 
the presence or absence of discrete features to a coded reference database, such as a 
system analogous to InsideWood (see Wheeler 2011). 

Axial parenchyma and fibers 
The primary way to distinguish axial parenchyma from fibers, when the vessel and 

rays are literally removed from the picture, is by color difference.In most taxa, the axial 
parenchyma, if present and observable with a hand lens, will be either lighter or darker 
than the fibers, and thus the system can determine a threshold of color ranges; all the 
tissue darker than some value will be either fibers or parenchyma,and everythinglighter 
than that value will be the other tissue. This is an application of point transformation, 
and a way to separate the two cell types. How do we teach the system to decide which 
set of pixels, the lighter or the darker, should be identified as the axial parenchyma, 
and which set the fibers? A possible solution might lie in the ways anatomists define 
parenchyma in general; if a taxon has aliform parenchyma, the geometric information 
of spatial proximity to the vessels could be used to define the parenchyma. That is to 
say, we know that fibers are rarely found in aliform-like clusters around vessels, so if 
an aliform-like cluster of pixels is identified around the space known to be occupied by 
a vessel in the image, the machine vision system can determine with high probability 
that the color range of pixels selected represents parenchyma, and thus determine that 
the other color range represents the fibers. 

DATABASE COMPILATION AND MANAGEMENT, 
AND DECISION AUTHORITY IN THE SYSTEM 

With these steps the machine vision system has separated the image into four classes of 
cells, vessels, rays, axial parenchyma,and fibers.Within each class and between classes 
data can be extracted and compared to generate the information coded for entry into 
a database of reference woods, much like the taxa listed in InsideWood.Additionally, 
the system can store the original image from which the data were extracted, so that, if 
there are any changes to the system or alterationsto the list of characters and definitions, 
the database can be repopulated with the new data without need to add a new image. 
As more reference images are added, the system’s data set defining the taxa will grow, 
and the statistical space that each taxon encompasses will change as well. This results 
in an evolving data set, the evolution of which is completely human-controlled. 
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The methods by which the system compares the patterns extracted from an image 
of an unknown wood to its reference database of coded data are beyond the purview 
of this article, but there are numerous possible combinations of methods; classical 
keying and comparison to a reference database, statistical methods using similarity 
calculations, neural networks, and others. This model for generating a database and 
making decisions is a static model; it waits on the human user to add new data, and it 
requires human definitions for characters. This is a powerful way to manage the data 
and operate an identification system, but it is perhaps not the most powerful method, 
because it relies on human input and does not fully capitalize on the computational 
power of the computers that comprise the system. 

By contrast, an active, self-learning system could: background mine the reference 
images and their coded data for new characters; have a decision protocol for when to 
add a new image as a reference (and maintain a hierarchy of “vouchered” images, pro­
visional reference images, and non-matches); and, be able to determine which woods 
within the database are anatomically similar. Once such similar taxa are identified, a 
self-learning system could further mine the data with the specific goal of determining a 
method to separate them, analogous to the work of Esteban et al. (2009) in Juniperus, 
or the implied separation methods used in the laboratory-based system of Khalid et al. 
(2008). 

A machine vision wood identification system database, whether static or self-learning, 
will contain unprecedented quantities of data about wood anatomical features, at least 
partly as a result of the inherentlyquantitativenature of the data in digital images.There 
are many possible measurements in wood anatomy that are not typically made (see Ifju 
1983 for some examples), and may contain information useful in wood identification. 
For example, in a wood like Betula pendula, some vessels are solitary, some are in 
multiples of two, some are in multiples of three, etc. When humans see the wood of B. 
pendula, we see a diffuse-porous hardwood with a fairly generic pore pattern. What 
if, considering only the solitary vessels, there were a specific pattern or distribution 
useful in identification? A pattern that humans do not readily perceive, because there 
is too much information present in an image, and we subconsciously smooth out the 
complexity by assigning the wood to a predefined category (e.g. diffuse-porous) in our 
mind. Machine vision systems will be able to pursue tens of thousands of combinations 
of “characters” that humans could not hope to codify for non-machine use. The appli­
cation of high numbers of additional characters for identification is likely to increase 
dramatically the ability of wood anatomy to separate previously inseparable taxa, in 
much the same way the large number of characters represented in DNA sequences em­
powered phylogenetic inference. 

CONCLUSIONS 

Khalid et al. (2008) have demonstrated that a machine vision system is capable of 
recognizing the differences in some wood species in a laboratory setting. The com­
pounding progress of computational technologies and machine vision methodologies 
has convinced us that basic field identificationby means of a machine vision system is 
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achievable in the short term; especially if the geographic scope or scale of the problem 
is limited (e.g. the species list of woods coming from Canada into the US is far smaller 
than those coming from Brazil). To design functional machine vision wood identifica­
tion systems, wood anatomists must work with machine vision specialists to select the 
appropriate hardware for signal acquisition, and then must assist in the definition of 
charactersfor the signal processing aspectsof the system.Such cooperationis facilitated 
by a basic understanding of some of the core principles and axioms of machine vision 
theory and application; those details presented here are the ones we deem most directly 
needed by anatomists to help solve the problem of automated wood identification, and 
thus extend the expertise of wood anatomy into the field.The process of this synergistic 
relation between anatomists and machine vision experts is illustrated conceptually in 
Figure 13, in which the original wood anatomical image is superimposed on the data 
plotted topographically with the vessels extracted using machine vision algorithms. 
The broader availability of wood identification tools should facilitate the enforcement 
of legal logging provisions throughout the world, and empower wood anatomists to 
focus their attention on problems of wood identification research too complex for a 
machine vision system. 

Figure 13. An overlay of the traditional means of viewing an image (top), the 3D topological 
view of the same data (middle), and a topological view after thresholding and processing the 
data to identify edges (bottom). Note that by comparing these three representations of the data, 
it becomes easier to translate the wood anatomical features between them. 
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